Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global and Local Information in Clustering Labeled Block Models (1404.6325v4)

Published 25 Apr 2014 in math.PR and cs.SI

Abstract: The stochastic block model is a classical cluster-exhibiting random graph model that has been widely studied in statistics, physics and computer science. In its simplest form, the model is a random graph with two equal-sized clusters, with intra-cluster edge probability p, and inter-cluster edge probability q. We focus on the sparse case, i.e., p, q = O(1/n), which is practically more relevant and also mathematically more challenging. A conjecture of Decelle, Krzakala, Moore and Zdeborova, based on ideas from statistical physics, predicted a specific threshold for clustering. The negative direction of the conjecture was proved by Mossel, Neeman and Sly (2012), and more recently the positive direction was proven independently by Massoulie and Mossel, Neeman, and Sly. In many real network clustering problems, nodes contain information as well. We study the interplay between node and network information in clustering by studying a labeled block model, where in addition to the edge information, the true cluster labels of a small fraction of the nodes are revealed. In the case of two clusters, we show that below the threshold, a small amount of node information does not affect recovery. On the other hand, we show that for any small amount of information efficient local clustering is achievable as long as the number of clusters is sufficiently large (as a function of the amount of revealed information).

Citations (40)

Summary

We haven't generated a summary for this paper yet.