Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fake Reviews Detection through Ensemble Learning (2006.07912v1)

Published 14 Jun 2020 in cs.LG and cs.SI

Abstract: Customers represent their satisfactions of consuming products by sharing their experiences through the utilization of online reviews. Several machine learning-based approaches can automatically detect deceptive and fake reviews. Recently, there have been studies reporting the performance of ensemble learning-based approaches in comparison to conventional machine learning techniques. Motivated by the recent trends in ensemble learning, this paper evaluates the performance of ensemble learning-based approaches to identify bogus online information. The application of a number of ensemble learning-based approaches to a collection of fake restaurant reviews that we developed show that these ensemble learning-based approaches detect deceptive information better than conventional machine learning algorithms.

Citations (14)

Summary

We haven't generated a summary for this paper yet.