Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Faces à la Carte: Text-to-Face Generation via Attribute Disentanglement (2006.07606v2)

Published 13 Jun 2020 in cs.CV

Abstract: Text-to-Face (TTF) synthesis is a challenging task with great potential for diverse computer vision applications. Compared to Text-to-Image (TTI) synthesis tasks, the textual description of faces can be much more complicated and detailed due to the variety of facial attributes and the parsing of high dimensional abstract natural language. In this paper, we propose a Text-to-Face model that not only produces images in high resolution (1024x1024) with text-to-image consistency, but also outputs multiple diverse faces to cover a wide range of unspecified facial features in a natural way. By fine-tuning the multi-label classifier and image encoder, our model obtains the vectors and image embeddings which are used to transform the input noise vector sampled from the normal distribution. Afterwards, the transformed noise vector is fed into a pre-trained high-resolution image generator to produce a set of faces with the desired facial attributes. We refer to our model as TTF-HD. Experimental results show that TTF-HD generates high-quality faces with state-of-the-art performance.

Citations (34)

Summary

We haven't generated a summary for this paper yet.