Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining Implicit Relevance Feedback from User Behavior for Web Question Answering (2006.07581v2)

Published 13 Jun 2020 in cs.IR and cs.CL

Abstract: Training and refreshing a web-scale Question Answering (QA) system for a multi-lingual commercial search engine often requires a huge amount of training examples. One principled idea is to mine implicit relevance feedback from user behavior recorded in search engine logs. All previous works on mining implicit relevance feedback target at relevance of web documents rather than passages. Due to several unique characteristics of QA tasks, the existing user behavior models for web documents cannot be applied to infer passage relevance. In this paper, we make the first study to explore the correlation between user behavior and passage relevance, and propose a novel approach for mining training data for Web QA. We conduct extensive experiments on four test datasets and the results show our approach significantly improves the accuracy of passage ranking without extra human labeled data. In practice, this work has proved effective to substantially reduce the human labeling cost for the QA service in a global commercial search engine, especially for languages with low resources. Our techniques have been deployed in multi-language services.

Citations (7)

Summary

We haven't generated a summary for this paper yet.