Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Leakage of Dataset Properties in Multi-Party Machine Learning (2006.07267v3)

Published 12 Jun 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Secure multi-party machine learning allows several parties to build a model on their pooled data to increase utility while not explicitly sharing data with each other. We show that such multi-party computation can cause leakage of global dataset properties between the parties even when parties obtain only black-box access to the final model. In particular, a ``curious'' party can infer the distribution of sensitive attributes in other parties' data with high accuracy. This raises concerns regarding the confidentiality of properties pertaining to the whole dataset as opposed to individual data records. We show that our attack can leak population-level properties in datasets of different types, including tabular, text, and graph data. To understand and measure the source of leakage, we consider several models of correlation between a sensitive attribute and the rest of the data. Using multiple machine learning models, we show that leakage occurs even if the sensitive attribute is not included in the training data and has a low correlation with other attributes or the target variable.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube