Papers
Topics
Authors
Recent
Search
2000 character limit reached

Implicit Kernel Attention

Published 11 Jun 2020 in cs.LG and stat.ML | (2006.06147v3)

Abstract: \textit{Attention} computes the dependency between representations, and it encourages the model to focus on the important selective features. Attention-based models, such as Transformer and graph attention network (GAT), are widely utilized for sequential data and graph-structured data. This paper suggests a new interpretation and generalized structure of the attention in Transformer and GAT. For the attention in Transformer and GAT, we derive that the attention is a product of two parts: 1) the RBF kernel to measure the similarity of two instances and 2) the exponential of $L{2}$ norm to compute the importance of individual instances. From this decomposition, we generalize the attention in three ways. First, we propose implicit kernel attention with an implicit kernel function instead of manual kernel selection. Second, we generalize $L{2}$ norm as the $L{p}$ norm. Third, we extend our attention to structured multi-head attention. Our generalized attention shows better performance on classification, translation, and regression tasks.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.