Papers
Topics
Authors
Recent
2000 character limit reached

Variational Quantum Boltzmann Machines (2006.06004v1)

Published 10 Jun 2020 in quant-ph

Abstract: This work presents a novel realization approach to Quantum Boltzmann Machines (QBMs). The preparation of the required Gibbs states, as well as the evaluation of the loss function's analytic gradient is based on Variational Quantum Imaginary Time Evolution, a technique that is typically used for ground state computation. In contrast to existing methods, this implementation facilitates near-term compatible QBM training with gradients of the actual loss function for arbitrary parameterized Hamiltonians which do not necessarily have to be fully-visible but may also include hidden units. The variational Gibbs state approximation is demonstrated with numerical simulations and experiments run on real quantum hardware provided by IBM Quantum. Furthermore, we illustrate the application of this variational QBM approach to generative and discriminative learning tasks using numerical simulation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.