Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Probabilistic Model for Discriminative and Neuro-Symbolic Semi-Supervised Learning

Published 10 Jun 2020 in cs.LG, cs.LO, and stat.ML | (2006.05896v4)

Abstract: Much progress has been made in semi-supervised learning (SSL) by combining methods that exploit different aspects of the data distribution, e.g. consistency regularisation relies on properties of $p(x)$, whereas entropy minimisation pertains to the label distribution $p(y|x)$. Focusing on the latter, we present a probabilistic model for discriminative SSL, that mirrors its classical generative counterpart. Under the assumption $y|x$ is deterministic, the prior over latent variables becomes discrete. We show that several well-known SSL methods can be interpreted as approximating this prior, and can be improved upon. We extend the discriminative model to neuro-symbolic SSL, where label features satisfy logical rules, by showing such rules relate directly to the above prior, thus justifying a family of methods that link statistical learning and logical reasoning, and unifying them with regular SSL.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.