Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Probabilistic Model for Discriminative and Neuro-Symbolic Semi-Supervised Learning (2006.05896v4)

Published 10 Jun 2020 in cs.LG, cs.LO, and stat.ML

Abstract: Much progress has been made in semi-supervised learning (SSL) by combining methods that exploit different aspects of the data distribution, e.g. consistency regularisation relies on properties of $p(x)$, whereas entropy minimisation pertains to the label distribution $p(y|x)$. Focusing on the latter, we present a probabilistic model for discriminative SSL, that mirrors its classical generative counterpart. Under the assumption $y|x$ is deterministic, the prior over latent variables becomes discrete. We show that several well-known SSL methods can be interpreted as approximating this prior, and can be improved upon. We extend the discriminative model to neuro-symbolic SSL, where label features satisfy logical rules, by showing such rules relate directly to the above prior, thus justifying a family of methods that link statistical learning and logical reasoning, and unifying them with regular SSL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.