Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning the Prediction Distribution for Semi-Supervised Learning with Normalising Flows (2007.02745v1)

Published 6 Jul 2020 in cs.LG and stat.ML

Abstract: As data volumes continue to grow, the labelling process increasingly becomes a bottleneck, creating demand for methods that leverage information from unlabelled data. Impressive results have been achieved in semi-supervised learning (SSL) for image classification, nearing fully supervised performance, with only a fraction of the data labelled. In this work, we propose a probabilistically principled general approach to SSL that considers the distribution over label predictions, for labels of different complexity, from "one-hot" vectors to binary vectors and images. Our method regularises an underlying supervised model, using a normalising flow that learns the posterior distribution over predictions for labelled data, to serve as a prior over the predictions on unlabelled data. We demonstrate the general applicability of this approach on a range of computer vision tasks with varying output complexity: classification, attribute prediction and image-to-image translation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.