Ensemble Learning with Statistical and Structural Models (2006.05308v1)
Abstract: Statistical and structural modeling represent two distinct approaches to data analysis. In this paper, we propose a set of novel methods for combining statistical and structural models for improved prediction and causal inference. Our first proposed estimator has the doubly robustness property in that it only requires the correct specification of either the statistical or the structural model. Our second proposed estimator is a weighted ensemble that has the ability to outperform both models when they are both misspecified. Experiments demonstrate the potential of our estimators in various settings, including fist-price auctions, dynamic models of entry and exit, and demand estimation with instrumental variables.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.