Papers
Topics
Authors
Recent
2000 character limit reached

Towards an Argument Mining Pipeline Transforming Texts to Argument Graphs

Published 8 Jun 2020 in cs.CL, cs.AI, and cs.LG | (2006.04562v2)

Abstract: This paper targets the automated extraction of components of argumentative information and their relations from natural language text. Moreover, we address a current lack of systems to provide complete argumentative structure from arbitrary natural language text for general usage. We present an argument mining pipeline as a universally applicable approach for transforming German and English language texts to graph-based argument representations. We also introduce new methods for evaluating the results based on existing benchmark argument structures. Our results show that the generated argument graphs can be beneficial to detect new connections between different statements of an argumentative text. Our pipeline implementation is publicly available on GitHub.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.