Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SearchFromFree: Adversarial Measurements for Machine Learning-based Energy Theft Detection (2006.03504v2)

Published 2 Jun 2020 in eess.SP, cs.CR, cs.LG, and stat.ML

Abstract: Energy theft causes large economic losses to utility companies around the world. In recent years, energy theft detection approaches based on ML techniques, especially neural networks, become popular in the research literature and achieve state-of-the-art detection performance. However, in this work, we demonstrate that the well-perform ML models for energy theft detection are highly vulnerable to adversarial attacks. In particular, we design an adversarial measurement generation algorithm that enables the attacker to report extremely low power consumption measurements to the utilities while bypassing the ML energy theft detection. We evaluate our approach with three kinds of neural networks based on a real-world smart meter dataset. The evaluation result demonstrates that our approach can significantly decrease the ML models' detection accuracy, even for black-box attackers.

Citations (18)

Summary

We haven't generated a summary for this paper yet.