Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and automated biomarker detection in breath samples with machine learning (2006.01772v1)

Published 24 May 2020 in cs.CV, cs.LG, and eess.SP

Abstract: Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health conditions and can be used for fast, accurate and non-invasive diagnostics. Gas chromatography-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited by expert-driven data analysis that is time-consuming, subjective and may introduce errors. We propose a system to perform GC-MS data analysis that exploits deep learning pattern recognition ability to learn and automatically detect VOCs directly from raw data, thus bypassing expert-led processing. The new proposed approach showed to outperform the expert-led analysis by detecting a significantly higher number of VOCs in just a fraction of time while maintaining high specificity. These results suggest that the proposed method can help the large-scale deployment of breath-based diagnosis by reducing time and cost, and increasing accuracy and consistency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.