Papers
Topics
Authors
Recent
2000 character limit reached

Distributionally Robust Chance Constrained Data-enabled Predictive Control (2006.01702v2)

Published 2 Jun 2020 in math.OC

Abstract: We study the problem of finite-time constrained optimal control of unknown stochastic linear time-invariant systems, which is the key ingredient of a predictive control algorithm -- albeit typically having access to a model. We propose a novel distributionally robust data-enabled predictive control (DeePC) algorithm which uses noise-corrupted input/output data to predict future trajectories and compute optimal control inputs while satisfying output chance constraints. The algorithm is based on (i) a non-parametric representation of the subspace spanning the system behaviour, where past trajectories are sorted in Page or Hankel matrices; and (ii) a distributionally robust optimization formulation which gives rise to strong probabilistic performance guarantees. We show that for certain objective functions, DeePC exhibits strong out-of-sample performance, and at the same time respects constraints with high probability. The algorithm provides an end-to-end approach to control design for unknown stochastic linear time-invariant systems. We illustrate the closed-loop performance of the DeePC in an aerial robotics case study.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.