Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cox regression analysis for distorted covariates with an unknown distortion function (2006.01507v1)

Published 2 Jun 2020 in stat.ME

Abstract: We study inference for censored survival data where some covariates are distorted by some unknown functions of an observable confounding variable in a multiplicative form. Example of this kind of data in medical studies is the common practice to normalizing some important observed exposure variables by patients' body mass index (BMI), weight or age. Such phenomenon also appears frequently in environmental studies where ambient measure is used for normalization, and in genomic studies where library size needs to be normalized for next generation sequencing data. We propose a new covariate-adjusted Cox proportional hazards regression model and utilize the kernel smoothing method to estimate the distorting function, then employ an estimated maximum likelihood method to derive estimator for the regression parameters. We establish the large sample properties of the proposed estimator. Extensive simulation studies demonstrate that the proposed estimator performs well in correcting the bias arising from distortion. A real data set from the National Wilms' Tumor Study (NWTS) is used to illustrate the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.