Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Power of Factorial Powers: New Parameter settings for (Stochastic) Optimization (2006.01244v3)

Published 1 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: The convergence rates for convex and non-convex optimization methods depend on the choice of a host of constants, including step sizes, Lyapunov function constants and momentum constants. In this work we propose the use of factorial powers as a flexible tool for defining constants that appear in convergence proofs. We list a number of remarkable properties that these sequences enjoy, and show how they can be applied to convergence proofs to simplify or improve the convergence rates of the momentum method, accelerated gradient and the stochastic variance reduced method (SVRG).

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube