Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Separation of Memory and Processing in Dual Recurrent Neural Networks (2005.13971v1)

Published 17 May 2020 in cs.NE, cs.FL, cs.LG, and stat.ML

Abstract: We explore a neural network architecture that stacks a recurrent layer and a feedforward layer that is also connected to the input, and compare it to standard Elman and LSTM architectures in terms of accuracy and interpretability. When noise is introduced into the activation function of the recurrent units, these neurons are forced into a binary activation regime that makes the networks behave much as finite automata. The resulting models are simpler, easier to interpret and get higher accuracy on different sample problems, including the recognition of regular languages, the computation of additions in different bases and the generation of arithmetic expressions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.