Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of Internal States in Recurrent Neural Networks Trained on Regular Languages (2006.10828v1)

Published 18 Jun 2020 in cs.LG and stat.ML

Abstract: We provide an empirical study of the stability of recurrent neural networks trained to recognize regular languages. When a small amount of noise is introduced into the activation function, the neurons in the recurrent layer tend to saturate in order to compensate the variability. In this saturated regime, analysis of the network activation shows a set of clusters that resemble discrete states in a finite state machine. We show that transitions between these states in response to input symbols are deterministic and stable. The networks display a stable behavior for arbitrarily long strings, and when random perturbations are applied to any of the states, they are able to recover and their evolution converges to the original clusters. This observation reinforces the interpretation of the networks as finite automata, with neurons or groups of neurons coding specific and meaningful input patterns.

Citations (6)

Summary

We haven't generated a summary for this paper yet.