Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hierarchical Fashion Graph Network for Personalized Outfit Recommendation (2005.12566v1)

Published 26 May 2020 in cs.IR

Abstract: Fashion outfit recommendation has attracted increasing attentions from online shopping services and fashion communities.Distinct from other scenarios (e.g., social networking or content sharing) which recommend a single item (e.g., a friend or picture) to a user, outfit recommendation predicts user preference on a set of well-matched fashion items.Hence, performing high-quality personalized outfit recommendation should satisfy two requirements -- 1) the nice compatibility of fashion items and 2) the consistence with user preference. However, present works focus mainly on one of the requirements and only consider either user-outfit or outfit-item relationships, thereby easily leading to suboptimal representations and limiting the performance. In this work, we unify two tasks, fashion compatibility modeling and personalized outfit recommendation. Towards this end, we develop a new framework, Hierarchical Fashion Graph Network(HFGN), to model relationships among users, items, and outfits simultaneously. In particular, we construct a hierarchical structure upon user-outfit interactions and outfit-item mappings. We then get inspirations from recent graph neural networks, and employ the embedding propagation on such hierarchical graph, so as to aggregate item information into an outfit representation, and then refine a user's representation via his/her historical outfits. Furthermore, we jointly train these two tasks to optimize these representations. To demonstrate the effectiveness of HFGN, we conduct extensive experiments on a benchmark dataset, and HFGN achieves significant improvements over the state-of-the-art compatibility matching models like NGNN and outfit recommenders like FHN.

Citations (98)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.