Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-Staged Cross-Lingual Acoustic Model Adaption for Robust Speech Recognition in Real-World Applications -- A Case Study on German Oral History Interviews

Published 26 May 2020 in eess.AS and cs.CL | (2005.12562v1)

Abstract: While recent automatic speech recognition systems achieve remarkable performance when large amounts of adequate, high quality annotated speech data is used for training, the same systems often only achieve an unsatisfactory result for tasks in domains that greatly deviate from the conditions represented by the training data. For many real-world applications, there is a lack of sufficient data that can be directly used for training robust speech recognition systems. To address this issue, we propose and investigate an approach that performs a robust acoustic model adaption to a target domain in a cross-lingual, multi-staged manner. Our approach enables the exploitation of large-scale training data from other domains in both the same and other languages. We evaluate our approach using the challenging task of German oral history interviews, where we achieve a relative reduction of the word error rate by more than 30% compared to a model trained from scratch only on the target domain, and 6-7% relative compared to a model trained robustly on 1000 hours of same-language out-of-domain training data.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.