Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Low-dose CT Enhancement Network with a Perceptual Loss Function in the Spatial Frequency and Image Domains (2005.11852v2)

Published 24 May 2020 in eess.IV and physics.med-ph

Abstract: We propose a dual-domain cascade of U-nets (i.e. a "W-net") operating in both the spatial frequency and image domains to enhance low-dose CT (LDCT) images without the need for proprietary x-ray projection data. The central slice theorem motivated the use of the spatial frequency domain in place of the raw sinogram. Data were obtained from the AAPM Low-dose Grand Challenge. A combination of Fourier space (F) and/or image domain (I) U-nets and W-nets were trained with a multi-scale structural similarity and mean absolute error loss function to denoise filtered back projected (FBP) LDCT images while maintaining perceptual features important for diagnostic accuracy. Deep learning enhancements were superior to FBP LDCT images in quantitative and qualitative performance with the dual-domain W-nets outperforming single-domain U-net cascades. Our results suggest that spatial frequency learning in conjunction with image-domain processing can produce superior LDCT enhancement than image-domain-only networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.