Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GoChat: Goal-oriented Chatbots with Hierarchical Reinforcement Learning (2005.11729v2)

Published 24 May 2020 in cs.CL and cs.AI

Abstract: A chatbot that converses like a human should be goal-oriented (i.e., be purposeful in conversation), which is beyond language generation. However, existing dialogue systems often heavily rely on cumbersome hand-crafted rules or costly labelled datasets to reach the goals. In this paper, we propose Goal-oriented Chatbots (GoChat), a framework for end-to-end training chatbots to maximize the longterm return from offline multi-turn dialogue datasets. Our framework utilizes hierarchical reinforcement learning (HRL), where the high-level policy guides the conversation towards the final goal by determining some sub-goals, and the low-level policy fulfills the sub-goals by generating the corresponding utterance for response. In our experiments on a real-world dialogue dataset for anti-fraud in financial, our approach outperforms previous methods on both the quality of response generation as well as the success rate of accomplishing the goal.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jianfeng Liu (26 papers)
  2. Feiyang Pan (13 papers)
  3. Ling Luo (32 papers)
Citations (23)