Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Inverse stochastic optimal controls (2005.11485v4)

Published 23 May 2020 in math.OC

Abstract: We study an inverse problem of the stochastic optimal control of general diffusions with performance index having the quadratic penalty term of the control process. Under mild conditions on the system dynamics, the cost functions, and the optimal control process, we show that our inverse problem is well-posed using a stochastic maximum principle. Then, with the well-posedness, we reduce the inverse problem to some root finding problem of the expectation of a random variable involved with the value function, which has a unique solution. Based on this result, we propose a numerical method for our inverse problem by replacing the expectation above with arithmetic mean of observed optimal control processes and the corresponding state processes. The recent progress of numerical analyses of Hamilton-Jacobi-BeLLMan equations enables the proposed method to be implementable for multi-dimensional cases. In particular, with the help of the kernel-based collocation method for Hamilton-Jacobi-BeLLMan equations, our method for the inverse problems still works well even when an explicit form of the value function is unavailable. Several numerical experiments show that the numerical method recovers the unknown penalty parameter with high accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)