Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Large $N$ Limit of the $O(N)$ Linear Sigma Model via Stochastic Quantization (2005.09279v3)

Published 19 May 2020 in math.PR, math-ph, math.AP, and math.MP

Abstract: This article studies large $N$ limits of a coupled system of $N$ interacting $\Phi4$ equations posed over $\mathbb{T}{d}$ for $d=2$, known as the $O(N)$ linear sigma model. Uniform in $N$ bounds on the dynamics are established, allowing us to show convergence to a mean-field singular SPDE, also proved to be globally well-posed. Moreover, we show tightness of the invariant measures in the large $N$ limit. For large enough mass, they converge to the (massive) Gaussian free field, the unique invariant measure of the mean-field dynamics, at a rate of order $1/\sqrt{N}$ with respect to the Wasserstein distance. We also consider fluctuations and obtain tightness results for certain $O(N)$ invariant observables, along with an exact description of the limiting correlations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.