Papers
Topics
Authors
Recent
2000 character limit reached

NEJM-enzh: A Parallel Corpus for English-Chinese Translation in the Biomedical Domain

Published 18 May 2020 in cs.CL and cs.DL | (2005.09133v1)

Abstract: Machine translation requires large amounts of parallel text. While such datasets are abundant in domains such as newswire, they are less accessible in the biomedical domain. Chinese and English are two of the most widely spoken languages, yet to our knowledge a parallel corpus in the biomedical domain does not exist for this language pair. In this study, we develop an effective pipeline to acquire and process an English-Chinese parallel corpus, consisting of about 100,000 sentence pairs and 3,000,000 tokens on each side, from the New England Journal of Medicine (NEJM). We show that training on out-of-domain data and fine-tuning with as few as 4,000 NEJM sentence pairs improve translation quality by 25.3 (13.4) BLEU for en$\to$zh (zh$\to$en) directions. Translation quality continues to improve at a slower pace on larger in-domain datasets, with an increase of 33.0 (24.3) BLEU for en$\to$zh (zh$\to$en) directions on the full dataset.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.