Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the Right Recipe for Low Resource Domain Adaptation in Neural Machine Translation (2206.01137v1)

Published 2 Jun 2022 in cs.CL and cs.LG

Abstract: General translation models often still struggle to generate accurate translations in specialized domains. To guide machine translation practitioners and characterize the effectiveness of domain adaptation methods under different data availability scenarios, we conduct an in-depth empirical exploration of monolingual and parallel data approaches to domain adaptation of pre-trained, third-party, NMT models in settings where architecture change is impractical. We compare data centric adaptation methods in isolation and combination. We study method effectiveness in very low resource (8k parallel examples) and moderately low resource (46k parallel examples) conditions and propose an ensemble approach to alleviate reductions in original domain translation quality. Our work includes three domains: consumer electronic, clinical, and biomedical and spans four language pairs - Zh-En, Ja-En, Es-En, and Ru-En. We also make concrete recommendations for achieving high in-domain performance and release our consumer electronic and medical domain datasets for all languages and make our code publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Virginia Adams (8 papers)
  2. Sandeep Subramanian (24 papers)
  3. Mike Chrzanowski (10 papers)
  4. Oleksii Hrinchuk (20 papers)
  5. Oleksii Kuchaiev (31 papers)
Citations (1)