Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

That Sounds Familiar: an Analysis of Phonetic Representations Transfer Across Languages (2005.08118v1)

Published 16 May 2020 in eess.AS, cs.CL, and cs.SD

Abstract: Only a handful of the world's languages are abundant with the resources that enable practical applications of speech processing technologies. One of the methods to overcome this problem is to use the resources existing in other languages to train a multilingual automatic speech recognition (ASR) model, which, intuitively, should learn some universal phonetic representations. In this work, we focus on gaining a deeper understanding of how general these representations might be, and how individual phones are getting improved in a multilingual setting. To that end, we select a phonetically diverse set of languages, and perform a series of monolingual, multilingual and crosslingual (zero-shot) experiments. The ASR is trained to recognize the International Phonetic Alphabet (IPA) token sequences. We observe significant improvements across all languages in the multilingual setting, and stark degradation in the crosslingual setting, where the model, among other errors, considers Javanese as a tone language. Notably, as little as 10 hours of the target language training data tremendously reduces ASR error rates. Our analysis uncovered that even the phones that are unique to a single language can benefit greatly from adding training data from other languages - an encouraging result for the low-resource speech community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Mark Hasegawa-Johnson (62 papers)
  2. Odette Scharenborg (34 papers)
  3. Najim Dehak (71 papers)
  4. Piotr Żelasko (36 papers)
  5. Laureano Moro-Velázquez (8 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.