Towards Socially Responsible AI: Cognitive Bias-Aware Multi-Objective Learning (2005.06618v2)
Abstract: Human society had a long history of suffering from cognitive biases leading to social prejudices and mass injustice. The prevalent existence of cognitive biases in large volumes of historical data can pose a threat of being manifested as unethical and seemingly inhuman predictions as outputs of AI systems trained on such data. To alleviate this problem, we propose a bias-aware multi-objective learning framework that given a set of identity attributes (e.g. gender, ethnicity etc.) and a subset of sensitive categories of the possible classes of prediction outputs, learns to reduce the frequency of predicting certain combinations of them, e.g. predicting stereotypes such as most blacks use abusive language', orfear is a virtue of women'. Our experiments conducted on an emotion prediction task with balanced class priors shows that a set of baseline bias-agnostic models exhibit cognitive biases with respect to gender, such as women are prone to be afraid whereas men are more prone to be angry. In contrast, our proposed bias-aware multi-objective learning methodology is shown to reduce such biases in the predictied emotions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.