Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness in AI Systems: Mitigating gender bias from language-vision models (2305.01888v1)

Published 3 May 2023 in cs.CV

Abstract: Our society is plagued by several biases, including racial biases, caste biases, and gender bias. As a matter of fact, several years ago, most of these notions were unheard of. These biases passed through generations along with amplification have lead to scenarios where these have taken the role of expected norms by certain groups in the society. One notable example is of gender bias. Whether we talk about the political world, lifestyle or corporate world, some generic differences are observed regarding the involvement of both the groups. This differential distribution, being a part of the society at large, exhibits its presence in the recorded data as well. Machine learning is almost entirely dependent on the availability of data; and the idea of learning from data and making predictions assumes that data defines the expected behavior at large. Hence, with biased data the resulting models are corrupted with those inherent biases too; and with the current popularity of ML in products, this can result in a huge obstacle in the path of equality and justice. This work studies and attempts to alleviate gender bias issues from language vision models particularly the task of image captioning. We study the extent of the impact of gender bias in existing datasets and propose a methodology to mitigate its impact in caption based language vision models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lavisha Aggarwal (4 papers)
  2. Shruti Bhargava (10 papers)
Citations (3)