Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribute-guided Feature Extraction and Augmentation Robust Learning for Vehicle Re-identification (2005.06184v1)

Published 13 May 2020 in cs.CV

Abstract: Vehicle re-identification is one of the core technologies of intelligent transportation systems and smart cities, but large intra-class diversity and inter-class similarity poses great challenges for existing method. In this paper, we propose a multi-guided learning approach which utilizing the information of attributes and meanwhile introducing two novel random augments to improve the robustness during training. What's more, we propose an attribute constraint method and group re-ranking strategy to refine matching results. Our method achieves mAP of 66.83% and rank-1 accuracy 76.05% in the CVPR 2020 AI City Challenge.

Citations (14)

Summary

We haven't generated a summary for this paper yet.