Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some upper bounds for the $\mathbb{A}$-numerical radius of $2\times 2$ block matrices (2005.04590v1)

Published 10 May 2020 in math.FA

Abstract: Let $\mathbb{A}=\left( \begin{array}{cc} A & 0 \ 0 & A \ \end{array} \right)$ be the $2\times2$ diagonal operator matrix determined by a positive bounded operator $A$. For semi-Hilbertian operators $X$ and $Y$, we first show that \begin{align*} w2_{\mathbb{A}}\left(\begin{bmatrix} 0 & X \ Y & 0 \end{bmatrix}\right) &\leq \frac{1}{4}\max\Big{{\big|XX{\sharp_A} + Y{\sharp_A}Y\big|}_{A}, {\big|X{\sharp_A}X + YY{\sharp_A}\big|}_{A}\Big} + \frac{1}{2}\max\big{w_{A}(XY), w_{A}(YX)\big}, \end{align*} where $w_{\mathbb{A}}(\cdot)$, ${|\cdot|}{A}$ and $w{A}(\cdot)$ are the $\mathbb{A}$-numerical radius, $A$-operator seminorm and $A$-numerical radius, respectively. We then apply the above inequality to find some upper bounds for the $\mathbb{A}$-numerical radius of certain $2\times 2$ operator matrices. In particular, we obtain some refinements of earlier $A$-numerical radius inequalities for semi-Hilbertian operators. An upper bound for the $\mathbb{A}$-numerical radius of $2\times 2$ block matrices of semi-Hilbertian space operators is also given.

Summary

We haven't generated a summary for this paper yet.