Some bounds for the $\mathbb{A}$-numerical radius of certain $2 \times 2$ operator matrices (2005.05745v1)
Abstract: For a given bounded positive (semidefinite) linear operator $A$ on a complex Hilbert space $\big(\mathcal{H}, \langle \cdot\mid \cdot\rangle \big)$, we consider the semi-Hilbertian space $\big(\mathcal{H}, \langle \cdot\mid \cdot\rangle_A \big)$ where ${\langle x\mid y\rangle}_A := \langle Ax\mid y\rangle$ for every $x, y\in\mathcal{H}$. The $A$-numerical radius of an $A$-bounded operator $T$ on $\mathcal{H}$ is given by \begin{align*} \omega_A(T) = \sup\Big{\big|{\langle Tx\mid x\rangle}_A\big|\,; \,\,x\in \mathcal{H}, \,{\langle x\mid x\rangle}_A= 1\Big}. \end{align*} Our aim in this paper is to derive several $\mathbb{A}$-numerical radius inequalities for $2\times 2$ operator matrices whose entries are $A$-bounded operators, where $\mathbb{A}=\text{diag}(A,A)$.