Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On A-numerical radius inequalities for $2 \times 2$ operator matrices (2004.07494v1)

Published 16 Apr 2020 in math.FA

Abstract: Let ($\mathcal{H}, \langle . , .\rangle )$ be a complex Hilbert space and $A$ be a positive bounded linear operator on it. Let $w_A(T)$ be the $A$-numerical radius and $|T|_A$ be the $A$-operator seminorm of an operator $T$ acting on the semi-Hilbertian space $(\mathcal{H}, \langle .,.\rangle_A),$ where $\langle x, y\rangle_A:=\langle Ax, y\rangle$ for all $x,y\in \mathcal{H}$. In this article, we establish several upper and lower bounds for $B$-numerical radius of $2\times 2$ operator matrices, where $B=\begin{bmatrix} A & 0 0 & A \end{bmatrix}$. Further, we prove some refinements of earlier $A$-numerical radius inequalities for operators.

Summary

We haven't generated a summary for this paper yet.