Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some $\mathbb{A}$-numerical radius inequalities for $d\times d$ operator matrices (2003.14378v1)

Published 31 Mar 2020 in math.FA

Abstract: Let $A$ be a positive (semidefinite) bounded linear operator acting on a complex Hilbert space $\big(\mathcal{H}, \langle \cdot\mid \cdot\rangle \big)$. The semi-inner product ${\langle x\mid y\rangle}A := \langle Ax\mid y\rangle$, $x, y\in\mathcal{H}$ induces a seminorm ${|\cdot|}_A$ on $\mathcal{H}$. Let $T$ be an $A$-bounded operator on $\mathcal{H}$, the $A$-numerical radius of $T$ is given by \begin{align*} \omega_A(T) = \sup\Big{\big|{\langle Tx\mid x\rangle}_A\big|: \,\,x\in \mathcal{H}, \,{|x|}_A = 1\Big}. \end{align*} In this paper, we establish several inequalities for $\omega\mathbb{A}(\mathbb{T})$, where $\mathbb{T}=(T_{ij})$ is a $d\times d$ operator matrix with $T_{ij}$ are $A$-bounded operators and $\mathbb{A}$ is the diagonal operator matrix whose each diagonal entry is $A$.

Summary

We haven't generated a summary for this paper yet.