Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

High-Dimensional Inference Based on the Leave-One-Covariate-Out LASSO Path (2005.03694v1)

Published 7 May 2020 in stat.ME

Abstract: We propose a new measure of variable importance in high-dimensional regression based on the change in the LASSO solution path when one covariate is left out. The proposed procedure provides a novel way to calculate variable importance and conduct variable screening. In addition, our procedure allows for the construction of P-values for testing whether each coefficient is equal to zero as well as for testing hypotheses involving multiple regression coefficients simultaneously; bootstrap techniques are used to construct the null distribution. For low-dimensional linear models, our method can achieve higher power than the $t$-test. Extensive simulations are provided to show the effectiveness of our method. In the high-dimensional setting, our proposed solution path based test achieves greater power than some other recently developed high-dimensional inference methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.