Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Fact-based Dialogue Generation with Convergent and Divergent Decoding (2005.03174v2)

Published 6 May 2020 in cs.CL, cs.HC, and cs.LG

Abstract: Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.