Token Manipulation Generative Adversarial Network for Text Generation (2005.02794v2)
Abstract: MaskGAN opens the query for the conditional LLM by filling in the blanks between the given tokens. In this paper, we focus on addressing the limitations caused by having to specify blanks to be filled. We decompose conditional text generation problem into two tasks, make-a-blank and fill-in-the-blank, and extend the former to handle more complex manipulations on the given tokens. We cast these tasks as a hierarchical multi agent RL problem and introduce a conditional adversarial learning that allows the agents to reach a goal, producing realistic texts, in cooperative setting. We show that the proposed model not only addresses the limitations but also provides good results without compromising the performance in terms of quality and diversity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.