Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Using posterior predictive distributions to analyse epidemic models: COVID-19 in Mexico City (2005.02294v2)

Published 5 May 2020 in q-bio.PE and physics.soc-ph

Abstract: Epidemiological models contain a set of parameters that must be adjusted based on available observations. Once a model has been calibrated, it can be used as a forecasting tool to make predictions and to evaluate contingency plans. It is customary to employ only point estimators for such predictions. However, some models may fit the same data reasonably well for a broad range of parameter values, and this flexibility means that predictions stemming from such models will vary widely, depending on the particular parameter values employed within the range that give a good fit. When data are poor or incomplete, model uncertainty widens further. A way to circumvent this problem is to use Bayesian statistics to incorporate observations and use the full range of parameter estimates contained in the posterior distribution to adjust for uncertainties in model predictions. Specifically, given the epidemiological model and a probability distribution for observations, we use the posterior distribution of model parameters to generate all possible epidemiological curves via the posterior predictive distribution. From the envelope of all curves one can extract the worst-case scenario and study the impact of implementing contingency plans according to this assessment. We apply this approach to the potential evolution of COVID-19 in Mexico City and assess whether contingency plans are being successful and whether the epidemiological curve has flattened.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.