Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Computing for Online Arabic Handwriting Character Recognition using Hard Stroke Features Mining (2005.02171v3)

Published 2 May 2020 in cs.CV and cs.CL

Abstract: Online Arabic cursive character recognition is still a big challenge due to the existing complexities including Arabic cursive script styles, writing speed, writer mood and so forth. Due to these unavoidable constraints, the accuracy of online Arabic character's recognition is still low and retain space for improvement. In this research, an enhanced method of detecting the desired critical points from vertical and horizontal direction-length of handwriting stroke features of online Arabic script recognition is proposed. Each extracted stroke feature divides every isolated character into some meaningful pattern known as tokens. A minimum feature set is extracted from these tokens for classification of characters using a multilayer perceptron with a back-propagation learning algorithm and modified sigmoid function-based activation function. In this work, two milestones are achieved; firstly, attain a fixed number of tokens, secondly, minimize the number of the most repetitive tokens. For experiments, handwritten Arabic characters are selected from the OHASD benchmark dataset to test and evaluate the proposed method. The proposed method achieves an average accuracy of 98.6% comparable in state of art character recognition techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Amjad Rehman (6 papers)

Summary

We haven't generated a summary for this paper yet.