Papers
Topics
Authors
Recent
Search
2000 character limit reached

Task Decomposition for MPC: A Computationally Efficient Approach for Linear Time-Varying Systems

Published 4 May 2020 in eess.SY and cs.SY | (2005.01673v1)

Abstract: A Task Decomposition method for iterative learning Model Predictive Control (TDMPC) for linear time-varying systems is presented. We consider the availability of state-input trajectories which solve an original task T1, and design a feasible MPC policy for a new task, T2, using stored data from T1. Our approach applies to tasks T2 which are composed of subtasks contained in T1. In this paper we formally define the task decomposition problem, and provide a feasibility proof for the resulting policy. The proposed algorithm reduces the computational burden for linear time-varying systems with piecewise convex constraints. Simulation results demonstrate the improved efficiency of the proposed method on a robotic path-planning task.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.