Papers
Topics
Authors
Recent
2000 character limit reached

Trajectory Optimization for Nonlinear Multi-Agent Systems using Decentralized Learning Model Predictive Control

Published 2 Apr 2020 in eess.SY, cs.LG, cs.SY, and math.OC | (2004.01298v4)

Abstract: We present a decentralized minimum-time trajectory optimization scheme based on learning model predictive control for multi-agent systems with nonlinear decoupled dynamics and coupled state constraints. By performing the same task iteratively, data from previous task executions is used to construct and improve local time-varying safe sets and an approximate value function. These are used in a decoupled MPC problem as terminal sets and terminal cost functions. Our framework results in a decentralized controller, which requires no communication between agents over each iteration of task execution, and guarantees persistent feasibility, finite-time closed-loop convergence, and non-decreasing performance of the global system over task iterations. Numerical experiments of a multi-vehicle collision avoidance scenario demonstrate the effectiveness of the proposed scheme.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.