Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tensor optimal transport, distance between sets of measures and tensor scaling

Published 2 May 2020 in cs.CV and math.OC | (2005.00945v2)

Abstract: We study the optimal transport problem for $d>2$ discrete measures. This is a linear programming problem on $d$-tensors. It gives a way to compute a "distance" between two sets of discrete measures. We introduce an entropic regularization term, which gives rise to a scaling of tensors. We give a variation of the celebrated Sinkhorn scaling algorithm. We show that this algorithm can be viewed as a partial minimization algorithm of a strictly convex function. Under appropriate conditions the rate of convergence is geometric and we estimate the rate. Our results are generalizations of known results for the classical case of two discrete measures.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.