Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sinkhorn Divergences for Unbalanced Optimal Transport (1910.12958v3)

Published 28 Oct 2019 in math.OC, cs.LG, and stat.ML

Abstract: Optimal transport induces the Earth Mover's (Wasserstein) distance between probability distributions, a geometric divergence that is relevant to a wide range of problems. Over the last decade, two relaxations of optimal transport have been studied in depth: unbalanced transport, which is robust to the presence of outliers and can be used when distributions don't have the same total mass; entropy-regularized transport, which is robust to sampling noise and lends itself to fast computations using the Sinkhorn algorithm. This paper combines both lines of work to put robust optimal transport on solid ground. Our main contribution is a generalization of the Sinkhorn algorithm to unbalanced transport: our method alternates between the standard Sinkhorn updates and the pointwise application of a contractive function. This implies that entropic transport solvers on grid images, point clouds and sampled distributions can all be modified easily to support unbalanced transport, with a proof of linear convergence that holds in all settings. We then show how to use this method to define pseudo-distances on the full space of positive measures that satisfy key geometric axioms: (unbalanced) Sinkhorn divergences are differentiable, positive, definite, convex, statistically robust and avoid any "entropic bias" towards a shrinkage of the measures' supports.

Citations (69)

Summary

We haven't generated a summary for this paper yet.