Nearly invariant subspaces with applications to truncated Toeplitz operators
Abstract: In this paper we first study the structure of the scalar and vector-valued nearly invariant subspaces with a finite defect. We then subsequently produce some fruitful applications of our new results. We produce a decomposition theorem for the vector-valued nearly invariant subspaces with a finite defect. More specifically, we show every vector-valued nearly invariant subspace with a finite defect can be written as the isometric image of a backwards shift invariant subspace. We also show that there is a link between the vector-valued nearly invariant subspaces and the scalar-valued nearly invariant subspaces with a finite defect. This is a powerful result which allows us to gain insight in to the structure of scalar subspaces of the Hardy space using vector-valued Hardy space techniques. These results have far reaching applications, in particular they allow us to develop an all encompassing approach to the study of the kernels of: the Toeplitz operator, the truncated Toeplitz operator, the truncated Toeplitz operator on the multiband space and the dual truncated Toeplitz operator.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.