Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of nearly invariant subspaces with finite defect in Hilbert spaces (2005.12786v1)

Published 26 May 2020 in math.FA

Abstract: In this article, we briefly describe nearly $T{-1}$ invariant subspaces with finite defect for a shift operator $T$ having finite multiplicity acting on a separable Hilbert space $\mathcal{H}$ as a generalization of nearly $T{-1}$ invariant subspaces introduced by Liang and Partington in \cite{YP}. In other words we characterize nearly $T{-1}$ invariant subspaces with finite defect in terms of backward shift invariant subspaces in vector-valued Hardy spaces by using Theorem 3.5 in \cite{CDP}. Furthermore, we also provide a concrete representation of the nearly $T_B{-1}$ invariant subspaces with finite defect in a scale of Dirichlet-type spaces $\mathcal{D}_\alpha$ for $\alpha \in [-1,1]$ corresponding to any finite Blashcke product $B$.

Summary

We haven't generated a summary for this paper yet.