Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Injection into Dialogue Generation via Language Models (2004.14614v2)

Published 30 Apr 2020 in cs.CL

Abstract: Dialogue generation has been successfully learned from scratch by neural networks, but tends to produce the same general response, e.g., "what are you talking about?", in many conversations. To reduce this homogeneity, external knowledge such as the speaker's profile and domain knowledge is applied as an additional condition to diversify a model's output. The required knowledge to develop an effective conversation, however, is not always available, which is different from prior work's assumption that a model always has acquired sufficient knowledge before chatting. This problem can be detrimental when applying a dialogue model like this chatting online with unconstrained people and topics, because the model does not have the needed knowledge. To address this problem, we propose InjK, which is a two-stage approach to inject knowledge into a dialogue generation model. First, we train a large-scale LLM and query it as textual knowledge. Second, we frame a dialogue generation model to sequentially generate textual knowledge and a corresponding response. Empirically, when a dialogue generation model can only access limited knowledge, our method outperforms prior work by producing more coherent and informative responses.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi-Lin Tuan (18 papers)
  2. Wei Wei (424 papers)
  3. William Yang Wang (254 papers)
Citations (4)