Papers
Topics
Authors
Recent
2000 character limit reached

A Practical Framework for Relation Extraction with Noisy Labels Based on Doubly Transitional Loss (2004.13786v1)

Published 28 Apr 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Either human annotation or rule based automatic labeling is an effective method to augment data for relation extraction. However, the inevitable wrong labeling problem for example by distant supervision may deteriorate the performance of many existing methods. To address this issue, we introduce a practical end-to-end deep learning framework, including a standard feature extractor and a novel noisy classifier with our proposed doubly transitional mechanism. One transition is basically parameterized by a non-linear transformation between hidden layers that implicitly represents the conversion between the true and noisy labels, and it can be readily optimized together with other model parameters. Another is an explicit probability transition matrix that captures the direct conversion between labels but needs to be derived from an EM algorithm. We conduct experiments on the NYT dataset and SemEval 2018 Task 7. The empirical results show comparable or better performance over state-of-the-art methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.