Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Distantly Supervised Relation Extraction with Neural Noise Converter and Conditional Optimal Selector (1811.05616v1)

Published 14 Nov 2018 in cs.CL and cs.AI

Abstract: Distant supervised relation extraction has been successfully applied to large corpus with thousands of relations. However, the inevitable wrong labeling problem by distant supervision will hurt the performance of relation extraction. In this paper, we propose a method with neural noise converter to alleviate the impact of noisy data, and a conditional optimal selector to make proper prediction. Our noise converter learns the structured transition matrix on logit level and captures the property of distant supervised relation extraction dataset. The conditional optimal selector on the other hand helps to make proper prediction decision of an entity pair even if the group of sentences is overwhelmed by no-relation sentences. We conduct experiments on a widely used dataset and the results show significant improvement over competitive baseline methods.

Citations (34)

Summary

We haven't generated a summary for this paper yet.