Papers
Topics
Authors
Recent
Search
2000 character limit reached

Low-rank matrix completion theory via Plucker coordinates

Published 26 Apr 2020 in cs.LG, math.AG, and stat.ML | (2004.12430v6)

Abstract: Despite the popularity of low-rank matrix completion, the majority of its theory has been developed under the assumption of random observation patterns, whereas very little is known about the practically relevant case of non-random patterns. Specifically, a fundamental yet largely open question is to describe patterns that allow for unique or finitely many completions. This paper provides two such families of patterns for any rank. A key to achieving this is a novel formulation of low-rank matrix completion in terms of Plucker coordinates, the latter a traditional tool in computer vision. This connection is of potential significance to a wide family of matrix and subspace learning problems with incomplete data.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.