Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enhancing Privacy via Hierarchical Federated Learning

Published 23 Apr 2020 in cs.CR | (2004.11361v1)

Abstract: Federated learning suffers from several privacy-related issues that expose the participants to various threats. A number of these issues are aggravated by the centralized architecture of federated learning. In this paper, we discuss applying federated learning on a hierarchical architecture as a potential solution. We introduce the opportunities for more flexible decentralized control over the training process and its impact on the participants' privacy. Furthermore, we investigate possibilities to enhance the efficiency and effectiveness of defense and verification methods.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.